图分析与图机器学习:原理、算法与实践在线阅读
会员

图分析与图机器学习:原理、算法与实践

(美)维克多·李等
开会员,本书免费读 >

计算机网络人工智能12.5万字

更新时间:2024-10-14 16:33:17 最新章节:封底

立即阅读
加书架
下载
听书

书籍简介

本书向数据科学家、数据工程师、架构师和业务分析师展示了如何使用领先的图数据库模型TigerGraph,目标是向读者介绍图数据结构、图分析和图机器学习的概念、技术和工具。三位作者介绍了涵盖多种当代业务需求的真实使用案例。读者将探索从互联数据中获取价值的三阶段方法:连接、分析和学习。几乎每章的开头都列出了对应的三个方面的目标:学习图分析和机器学习的概念;用图分析解决特定问题;了解如何使用GSQL查询语言和TigerGraph图平台。
品牌:机械工业出版社
译者:谭梦迪等
上架时间:2024-08-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

(美)维克多·李等
主页

同类热门书

最新上架

  • 会员
    本书从技术、应用和产业3个维度为切入点,对智能语音语义领域相关的热点和趋势展开研究。本书以“人与机器的对话”开篇,讲述人类语音生成、传播和感知的过程,引发对于机器智能语音听说的思考,进而阐述技术探索发展史;然后,分析了以语音交互为核心的技术现状,综合剖析提出全双工、端到端模型构建、语音假冒攻击等热点;其次,从政策、投融资和产业规模上,分析整体智能语音产业环境,纵观国内外企业在相关技术和产品上的积极
    李荪 曾然然 殷治纲编著计算机13.6万字
  • 会员
    本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最
    孙健编著计算机7.4万字
  • 会员
    本书深度探讨了构建和训练ChatGPT模型涉及的核心技术,以及ChatGPT在各种实际应用中的作用。全书精心划分为三部分,其中第1章为第1部分,第2章为第2部分,第3章和第4章为第3部分。首先,详细阐述了机器学习的历史演变与各种学习范式,同时也揭示了在人工智能生成内容(AIGC)领域下,图像处理和自然语言处理技术的历史发展趋势;接下来,对ChatGPT的运行机制和关键算法进行深度解析,包括大规模模
    邱才明 凌泽南 冯湛搏 杨昊编著计算机10.8万字
  • 会员
    机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。
    董平编著计算机18万字
  • 会员
    Sora是一个文本生成视频工具,本书介绍了Sora在视频生成领域的巨大潜力。本书共9章,系统讲解人工智能的演进、Sora的应用实践、Sora深度解析、Sora的挑战与未来等。本书内容全面、图文并茂、经典易懂,适合想要学习Sora的初学者,以及想要学习文本生成文本、文本生成图片、文本生成视频等内容的人工智能爱好者、自媒体从业人员、短视频制作者、设计师、相关专业的企业和高校人员阅读。
    林富荣编著计算机3.2万字
  • 会员
    本书理论联系实际,全面地介绍ChatGPT的主要应用场景,帮助读者掌握ChatGPT的使用方法和技巧。本书不仅讲述了ChatGPT在学习、写作、工作、生活方面的应用案例,还介绍了一个打造个人品牌的综合应用,内容实用,可操作性强。本书适合希望了解ChatGPT的初学者阅读。
    刘韩 王子 潘剑峰编著计算机9.6万字
  • 本书是一本深度探讨大模型在低算力环境下实现迁移与微调的实践指南,并深入讲解了大模型的部署与优化策略。书中结合多个垂直领域的应用场景,从理论到技术实现,全程详尽讲解了如何应对大模型在行业落地中的技术挑战,帮助读者逐步掌握大模型的迁移与微调核心技术。无论你是大模型开发者、人工智能研究人员,还是对垂直领域AI应用感兴趣的行业专家,本书都将带你深入大模型的核心领域,提供从构建、优化到部署的全流程指导,助你
    程戈计算机13.7万字
  • 会员
    机器学习是计算机科学与人工智能的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算
    周志华计算机22.7万字
  • 会员
    本书着重阐述了深度学习时代的计算机视觉算法的工作原理,首先对深度学习与计算机视觉基础进行了介绍,之后对卷积神经网络结构的演化过程,以及基于深度学习的目标检测算法、图像分割算法、人体姿态估计算法、行人重识别与目标跟踪算法、人脸识别算法以及图像超分辨率重建方法进行了介绍。本书系统讲解了在日常生活和工作中常见的几项计算机视觉任务,并着重介绍了在当今深度学习时代,这些计算机视觉任务是如何工作的,可使读者快
    徐从安 李健伟 董云龙 孙超等计算机9.9万字