
会员
Python人工智能
更新时间:2020-10-16 16:27:22 最新章节:参考文献
书籍简介
本书系统地介绍了基于Python平台的人工智能的原理及实现过程,全书共7章。第1章“从这里开始认识Python”,介绍人工智能及Python基础知识;第2章“Python语法基础”,通过生动有趣的实验实例介绍Python编程语法知识;第3章“Python程序设计”,以实例为基础,介绍Python的编程方法;第4章“数据结构”,通过范例介绍列表、元组、字典、集合、函数等数据结构的使用方法;第5章“数据库及应用”,主要介绍Python数据库应用及Web应用开发技术,通过实例讲解Python数据库应用;第6章“大数据应用”,基于实例,主要介绍网络爬虫、Excel数据爬取及分析处理等技术,了解数据挖掘分析处理等大数据应用技术的一般设计流程;第7章“人工智能”,以具体实例讲解照片人脸识别、图像识别、视频人脸识别、聊天机器人、微信语音聊天机器人、图文识别、语音识别及花朵识别等人工智能深度学习技术。本书图文并茂,示例丰富,讲解细致透彻,介绍深入浅出,章后练习精广,具有很强的实用性和可操作性,适合初学或自学Python的学生,可作为中小学STEM教育或培训机构的人工智能课程教材,也可作为大中专院校人工智能、软件工程、计算机等专业以及相关课程的教材或参考书,还可以当作全国计算机二级(Python)考试的教材使用。
品牌:清华大学
上架时间:2020-03-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
刘伟善
同类热门书
最新上架
- 会员本书从技术、应用和产业3个维度为切入点,对智能语音语义领域相关的热点和趋势展开研究。本书以“人与机器的对话”开篇,讲述人类语音生成、传播和感知的过程,引发对于机器智能语音听说的思考,进而阐述技术探索发展史;然后,分析了以语音交互为核心的技术现状,综合剖析提出全双工、端到端模型构建、语音假冒攻击等热点;其次,从政策、投融资和产业规模上,分析整体智能语音产业环境,纵观国内外企业在相关技术和产品上的积极计算机13.6万字
- 会员本书着重阐述了深度学习时代的计算机视觉算法的工作原理,首先对深度学习与计算机视觉基础进行了介绍,之后对卷积神经网络结构的演化过程,以及基于深度学习的目标检测算法、图像分割算法、人体姿态估计算法、行人重识别与目标跟踪算法、人脸识别算法以及图像超分辨率重建方法进行了介绍。本书系统讲解了在日常生活和工作中常见的几项计算机视觉任务,并着重介绍了在当今深度学习时代,这些计算机视觉任务是如何工作的,可使读者快计算机9.9万字
- 会员本书旨在帮助读者全面理解知识图谱的基本原理和概念。通过清晰的解释和实例,读者将深入了解知识图谱的构建、表示、推理等关键知识点。此外,本书通过提供代码实战,引导读者亲自动手构建知识图谱,并应用各种技术和工具进行实践。这种实践性的讲解方法可帮助读者更深入地理解知识图谱的实际应用。本书的目标是帮助读者全面理解知识图谱的基本原理和概念,并通过代码实战构建知识图谱。同时,本书也提供了关于大语言模型与知识图谱计算机9.6万字
- 会员本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字
- 会员本书作为文心一言的学习指南,全面、细致地介绍了文心一言PC端和App的各项功能和使用方法,力求通过简洁明了的语言和图文并茂的形式,让读者快速掌握文心一言的各项功能。全书共8章,首先简单介绍了人工智能发展的几个阶段及文心一言的相关研发背景;随后介绍了文心一言的基础页面及功能等内容,以及文心一言在学习、工作、生活娱乐方面的应用及相关案例;接着介绍了文心一言的插件,以及文心一言App的功能和使用技巧;最计算机10.7万字
- 会员本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字